Ayuda
Ir al contenido

Dialnet


Fundamentals of p-adic multiple L-functions and evaluation of their special values

    1. [1] Nagoya University

      Nagoya University

      Naka-ku, Japón

    2. [2] Rikkyo University

      Rikkyo University

      Japón

    3. [3] Tokyo Metropolitan University

      Tokyo Metropolitan University

      Japón

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 23, Nº. 1, 2017, págs. 39-100
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We construct p-adic multiple L-functions in several variables, which are generalizations of the classical Kubota–Leopoldt p-adic L-functions, by using a specific p-adic measure. Our construction is from the p-adic analytic side of view, and we establish various fundamental properties of these functions. (a) Evaluation at nonpositive integers: We establish their intimate connection with the complex multiple zeta-functions by showing that the special values of the p-adic multiple L-functions at non-positive integers are expressed by the twisted multiple Bernoulli numbers, which are the special values of the complex multiple zeta-functions at non-positive integers.

      (b) Multiple Kummer congruences: We extend Kummer congruences for Bernoulli numbers to congruences for the twisted multiple Bernoulli numbers. (c) Functional relations with a parity condition: We extend the vanishing property of the Kubota– Leopoldt p-adic L-functions with odd characters to our p-adic multiple L-functions.

      (d) Evaluation at positive integers: We establish their close relationship with the p-adic twisted multiple star polylogarithms by showing that the special values of the p-adic multiple L-functions at positive integers are described by those of the p-adic twisted multiple star polylogarithms at roots of unity, which generalizes the result of Coleman in the single variable case.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno