Ayuda
Ir al contenido

Dialnet


Percolation on the stationary distributions of the voter model

    1. [1] University of Groningen

      University of Groningen

      Países Bajos

    2. [2] MTA-BME Stochastics Research Group
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 45, Nº. 3, 2017, págs. 1899-1951
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The voter model on ZdZd is a particle system that serves as a rough model for changes of opinions among social agents or, alternatively, competition between biological species occupying space. When d≥3d≥3, the set of (extremal) stationary distributions is a family of measures μαμα, for αα between 0 and 1. A configuration sampled from μαμα is a strongly correlated field of 0’s and 1’s on ZdZd in which the density of 1’s is αα. We consider such a configuration as a site percolation model on ZdZd. We prove that if d≥5d≥5, the probability of existence of an infinite percolation cluster of 1’s exhibits a phase transition in αα. If the voter model is allowed to have sufficiently spread-out interactions, we prove the same result for d≥3d≥3.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno