Ayuda
Ir al contenido

Dialnet


Resumen de A potassium-dependent oxygen sensing pathway regulates plant root hydraulics

Zaigham Shahzad, Matthieu Canut, Colette Tournaire Roux

  • Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K+) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K+ and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus