Ayuda
Ir al contenido

Dialnet


Clasificación de usos del suelo a partir de imágenes Sentinel-2

  • Autores: J. Borràs, Jesús Delegido, A. Pezzola, M. Pereira, G. Morassi, Gustavo Camps Valls
  • Localización: Revista de teledetección: Revista de la Asociación Española de Teledetección, ISSN 1133-0953, Nº. 48, 2017, págs. 55-66
  • Idioma: español
  • Títulos paralelos:
    • Land use classification from Sentinel-2 imagery
  • Enlaces
  • Resumen
    • español

      Sentinel-2 (S2) es un nuevo satélite de la ESA que cuenta con 13 bandas proporcionando imágenes de alta calidad radiométrica y excelente resolución espacial (10 y 20 m) ideal para trabajos de clasificación. En este trabajo se han abordado dos objetivos: determinar el mejor método de clasificación con S2, y cuantificar su mejora respecto a otras misiones operativas, como SPOT. Para ello se han seleccionado cuatro clasificadores (LDA, RF, Árboles de decisión, K-NN) que se han aplicado en dos zonas agrarias: una en la huerta de Valencia (España) y otra en la región de Buenos Aires (Argentina). Se han probado todos los clasificadores usando, por una parte, todas las bandas de S2, y por otra usando sólo las cuatro que coinciden con SPOT. En todos los casos se han aplicando porcentajes entre el 10 y el 50% de datos de entrenamiento y usado el resto de datos como validación. Como resultado se ha generado un mapa de usos del suelo a partir del mejor clasificador, basándose en el índice Kappa, proporcionando información científicamente relevante como es el área ocupada por cada una de las clases.

    • English

      Sentinel-2 (S2), a new ESA satellite for Earth observation, accounts with 13 bands which provide high-quality radiometric images with an excellent spatial resolution (10 and 20 m) ideal for classification purposes. In this paper, two objectives have been addressed: to determine the best classification method for S2, and to quantify its improvement with respect to the SPOT operational mission. To do so, four classifiers (LDA, RF, Decision Trees, K-NN) have been selected and applied to two different agricultural areas located in Valencia (Spain) and Buenos Aires (Argentina). All classifiers were tested using, on the one hand, all the S2 bands and, on the other hand, only selecting those bands from S2 closer to the four bands from SPOT. In all the cases, between 10%-50% of samples were used to train the classifier while remaining the rest for validation. As a result, a land use map was generated from the best classifier, according to the Kappa index, providing scientifically relevant information such as the area of each land use class.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno