Los nuevos fenómenos de supratransmisión e infratransmisión han sido predichos numéricamente en ciertos sistemas no lineales discretos y, en algunos casos, aproximados analíticamente en límites al caso continuo; sin embargo, el mecanismo matemático que modela al caso discreto no ha sido develado del todo. En este trabajo, se hace uso de una nueva técnica computacional no estándar con propiedades de consistencia en energía, a efecto de predecir numéricamente la ocurrencia de dichos fenómenos en arreglos discretos de conjunciones de Josephson sometidos a amortiguamiento externo y a los efectos de corrientes de Josephson, en donde el modelo matemático involucra un problema de Neumann de valores en la frontera para un sistema de ecuaciones de seno-Gordon acopladas.
The recently discovered phenomena of supratransmission and infratransmission have been predicted numerically in certain discrete nonlinear systems, and in some cases approximated analytically in continuous-limit scenarios, yet the mathematical apparatus of the fully discrete case is not completely understood. In this paper, it is used a recently-developed non-standard, energy-based method in order to predict numerically the occurrence of these processes in discrete Josephson junction arrays submitted to external damping and nonzero normalized bias current, where the underlying model is a Neumann boundary-value problem involving a system of coupled sine-Gordon equations.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados