La predicción espacial del contenido de arcillas (As) a escala de lote es requerida para la implementación de agricultura de precisión y modelos de simulación hidrológica. Sin embargo, la brecha de técnicas de cartografía que permitan establecer la heterogeneidad de As limita la capacidad para determinar su variabilidad. En este estudio, se evaluó el uso de conductividad eléctrica aparente (CEa) como variable auxiliar, dos esquemas de muestreo basados en modelos (EBM) (Hipercubo latino condicionado (HCL) y fuzzy c-medias (FCM)) e interpolación geoestadística (cokriging ordinario) para predecir As en un lote agrícola experimental de 25.18 has. Los resultados soportan los supuestos que (i) tanto HCL como FCM capturan adecuadamente la distribución total de la CEa; y (ii) As está cerradamente relacionado con CEa. En general, los resultados sugieren tres aspectos a tener en cuenta. Primero, el tipo de EBM afecta la eficiencia de la interpolación para predecir As; Segundo, únicamente 30 muestras de suelo son suficientes para obtener un mapa preciso de As (R2>0.73); y tercero, un conjunto de muestras de suelo independiente es lo más adecuado para validar la metodología propuesta. Interpolación espacial a partir de CEa y HCL proporcionó una leve mejora en la predicción espacial de As (R2= 0.78, RMSE=1.50%) que interpolación espacial a partir de CEa y FCM (R2= 0.73, RMSE=1.63%). Sin embargo, tanto interpolación con HCL como interpolación con FCM proporcionan una significativa mejora de información de As con respecto a las técnicas de cartografía convencional. Además, ambas interpolaciones son fáciles de replicar para otros lotes agrícolas. Por lo tanto, esto puede ser significativo para la implementación de manejo sitio específico de cultivos y para modelos de simulación hidrológica.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados