Ayuda
Ir al contenido

Dialnet


Resumen de Junction temperature of QFN32 and 64 electronic devices subjected to free convection: effects of the resin's thermal conductivity

Abderrahmane Baïri

  • Abstract The thermal state of the electronic devices used in many engineering fields must be controlled. The maximum temperature does not exceed the value recommended by the manufacturer to prevent a decrease of their reliability, malfunction or decommissioning. The junction temperature of the Quad Flat Non-Lead (QFN) device which often equips the electronic assemblies is affected by the thermal characteristics of its components, in particular the thermal conductivity of the molding compound (resin) used for the package encapsulation. This work deals with the QFN32 and QFN64 models widely used in the field of smart building. These devices may be tilted of any angle from the horizontal and vertical positions, depending on where they are located in the considered building. The packages located in small boxes are subjected to air natural convection. The 3D numerical approach based on the volume control method considers several configurations obtained by varying the generated power between 0.01 and 0.1 W by steps of 0.01 W, corresponding to the partial operation. The junction thermal state is determined for many values of the resin's thermal conductivity ranging between − 80% and + 100% of its average value and inclination of the devices varying between 0 and 90° (horizontal and vertical positions respectively) by steps of 15°. The results of the numerical solution are confirmed by thermal and electrical measurements carried out in situ on various prototypes. The deviation between measurements and calculations is low, ranging between − 3 and + 7%. New and accurate relationships are proposed, allowing to improve the thermal design of the QFN32 and QFN64 packages by determining their junction temperature for any combination of the considered generated power, tilt angle and thermal conductivity of the encapsulating resin. The control of the thermal aspect allows to enhance substantially the reliability of these widely used electronic devices.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus