Ayuda
Ir al contenido

Dialnet


Resumen de An improvement to the classification based on the measurement of the similarity quality using fuzzy relations

Yumilka B. Fernández Hernández, Yaima Filiberto, Mabel Frias, Rafael Bello, Yailé Caballero Mota

  • español

    El aprendizaje de reglas de clasificación es un problema clásico del aprendizaje automático. El algoritmo IRBASIR para la inducción de reglas de clasificación basado en relaciones de similaridad permite descubrir conocimiento a partir de sistemas de decisión que contienen rasgos tanto discretos como continuos. El mismo ha mostrado obtener resultados superiores a otros algoritmos conocidos en este tema. En este artículo se proponen varias modificaciones a este algoritmo basadas en la Teoría de los Conjuntos Borrosos, debido a las ventajas que estos poseen, teniendo en cuenta la medida calidad de similaridad. Los resultados experimentales muestran que utilizando la Teoría de los Conjuntos Borrosos se obtienen resultados estadísticamente superiores al algoritmo original.

  • English

    The learning of classification rules is a classic problem of the automatic learning. The algorithm IRBASIR for the induction of classification rules based on similaridad relations allows to discover knowledge starting from decision systems that contain features with continuous and discrete domains. This algorithm has shown to obtain higher results than other well-known algorithms. In this article, several modifications to this algorithm based on the Fuzzy sets theory are proposed, taking into account the measure quality of similarity. The experimental results show that using the fuzzy sets theory allow to obtain higher results than the original algorithm.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus