Arash Abbasalizadeh Boora, Firuz Zare, Arindam Ghosh
Purpose – Multi‐level diode‐clamped inverters have the challenge of capacitor voltage balancing when the number of DC‐link capacitors is three or more. On the other hand, asymmetrical DC‐link voltage sources have been applied to increase the number of voltage levels without increasing the number of switches. The purpose of this paper is to show that an appropriate multi‐output DC‐DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC‐link voltages advantages.
Design/methodology/approach – A family of multi‐output DC‐DC converters is presented in this paper. The application of these converters is to convert the output voltage of a photovoltaic (PV) panel to regulate DC‐link voltages of an asymmetrical four‐level diode‐clamped inverter utilized for domestic applications. To verify the versatility of the presented topology, simulations have been directed for different situations and results are presented. Some related experiments have been developed to examine the capabilities of the proposed converters.
Findings – The three‐output voltage‐sharing converters presented in this paper have been mathematically analysed and proven to be appropriate to improve the quality of the residential application of PV by means of four‐level asymmetrical diode‐clamped inverter supplying highly resistive loads.
Originality/value – This paper shows that an appropriate multi‐output DC‐DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC‐link voltages advantages and that there is a possibility of operation at high‐modulation index despite reference voltage magnitude and power factor variations.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados