Hui Guo, Stephanie A. Bueler, John L. Rubinstein
Mitochondrial adenosine triphosphate (ATP) synthase produces the majority of ATP in eukaryotic cells, and its dimerization is necessary to create the inner membrane folds, or cristae, characteristic of mitochondria. Proton translocation through the membrane-embedded FO region turns the rotor that drives ATP synthesis in the soluble F1 region. Although crystal structures of the F1 region have illustrated how this rotation leads to ATP synthesis, understanding how proton translocation produces the rotation has been impeded by the lack of an experimental atomic model for the FO region. Using cryo–electron microscopy, we determined the structure of the dimeric FO complex from Saccharomyces cerevisiae at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados