Ayuda
Ir al contenido

Dialnet


Resumen de Optimal state selection and tuning parameters for a degradation model in bearings using Mel-Frequency Cepstral Coefficients and Hidden Markov Chains

Mauricio Holguín, Álvaro A. Orozco-Gutierrez, Germán A. Holguín, Mauricio A. Álvarez López

  • español

    El mantenimiento preventivo es una filosofía para la administración de activos que persigue el fin de maximizar la operación mediante rutinas de inspección, las cuales aumentan su frecuencia a medida que no se presenta un estado anormal, conllevando a que se incremente la probabilidad de falla debido a la mayor cantidad de intervenciones y por el error humano inherente. Recientemente la investigación de pronóstico ha sido utilizada con el objetivo de alcanzar estrategias efectivas de mantenimiento y con el fin de evaluar y administrar el riesgo residual en equipos que sufren degradación. El pronóstico se relaciona con la estimación de vida útil restante (RUL) de un activo al predecir su estado de salud durante la progresión de la degradación. Este artículo presenta el desarrollo de un sistema automático para identificar tipos de fallos en rodamientos, empleando Coeficientes Cepstrales en la escala de Mel (MFCC) como conjunto de características y Cadenas Ocultas de Markov (HMC) con observaciones discretas como clasificador. Se hace hincapié en la selección óptima de estados del clasificador HMM mediante el criterio de curvas ROC (Receiver Operating Characteristic). Las características son discretizadas empleando agrupamiento por k-medias. Las señales de estudio son datos de vibración provenientes de rodamientos. Se emplean dos bases de datos que presentan cuatro escenarios diferentes de operación, a saber: normal, falla en pista interna, falla en pista externa y falla en bola. Una de las bases permite diferenciar niveles de severidad para cada escenario de operación.

  • English

    Preventive maintenance is a philosophy for assets management that aims to maximize operation through routine inspections with increasing frequency when no abnormalities are exhibit. This leads to an increase in the probability of failure due to the repetitive intervention and the inherent human error. Recently, forecasting research, or predictive research, have been addressed in order to obtain effective maintenance strategies and evaluate and manage the residual risk in equipment susceptible to degradation. Predictive research is related to the estimation of an active's Remaining Useful Life (RUL) by predicting its health state through the progression of its degradation. This article presents the development of an automated system that identifies types of faults in bearings, using Cepstral Coefficients on the Mel scale (MFCC) as the features set for description, and Hidden Markov Chains (HMC) with discrete observations as the classification method. Here we emphasizes on the optimal selection of the states in the HMM classifier using the ROC (Receiver Operating Characteristic) curves criteria. Features are discretized using clustering by k-means. Signals in this study are vibrations signals from the bearings in electrical machinery. The two databases used here are labeled with four different operation scenarios: normal, inner ring fault, outer ring fault, and rolling element fault. One of the databases allows for differentiation in severity levels for each scenario.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus