Ayuda
Ir al contenido

Dialnet


Biodiversity implications of coppice decline, transformations to high forest and coppice restoration in British woodland

    1. [1] Department of Plant Sciences. Oxford, UK
  • Localización: Folia geobotánica: A journal of plant ecology and systematics, ISSN-e 1874-9348, ISSN 1211-9520, Vol. 52, Nº 1, 2017, págs. 5-13
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Coppice systems are amongst the earliest forms of woodland management known, and on some sites, their use has been documented for centuries. Distinctive assemblages of plants and animals are associated with such systems and are highly valued in nature conservation terms. The richness of such assemblages, and conversely, the species that do not thrive under coppice, are linked to the alternation of relatively short light and dark phases, and the juxtaposition of stands at different stages in the coppice cycle. Vascular plants in the ground flora, invertebrates of open glades and scrub, and small birds of the understorey may have become more abundant in coppice than they would have been under ‘natural’ forest conditions. By contrast, epiphytes dependent on mature trees and species of large-sized deadwood are less favoured by coppice management. Coppice systems developed to meet the local community needs. As social and economic conditions changed, so coppicing declined and the woods were transformed into high forest through neglect or deliberate management. High forests differ from coppice stands in their spatial and temporal dynamics, and consequently, in their wildlife, particularly with respect to their vertical structure pattern, extent of open space and young growth, spatial heterogeneity, tree and shrub composition, and browsing levels. Three issues for the conservation of biodiversity arise from these changes: (1) What priority and resources should be given to halting further decline, by maintaining coppice compared to allowing sites to develop with more ‘natural’ high forest structures and dynamics; will associated high-forest species recolonize? (2) If we restore coppice systems, will the species assemblages present in the past also recover, under current and future changes in environmental conditions; i.e is the transformation reversible under current environmental conditions? (3) Are there other ways in which ‘coppice-associated’ species might be maintained? We identify research gaps and proposals to address these issues.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno