Ayuda
Ir al contenido

Dialnet


Double-Diffusive Convection at Low Prandtl Number

    1. [1] University of California, Santa Cruz

      University of California, Santa Cruz

      Estados Unidos

  • Localización: Annual review of fluid mechanics, ISSN 0066-4189, Nº. 50, 2018, págs. 275-298
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This work reviews present knowledge of double-diffusive convection at low Prandtl number obtained using direct numerical simulations, in both the fingering regime and the oscillatory regime. Particular emphasis is given to modeling the induced turbulent mixing and its impact in various astrophysical applications. The nonlinear saturation of fingering convection at low Prandtl number usually drives small-scale turbulent motions whose transport properties can be predicted reasonably accurately using a simple semi-analytical model. In some instances, large-scale internal gravity waves can be excited by a collective instability and eventually cause layering. The nonlinear saturation of oscillatory double-diffusive convection exhibits much more complex behavior. Weakly stratified systems always spontaneously transition into layered convection associated with very efficient mixing. More strongly stratified systems remain dominated by weak wave turbulence unless they are initialized into a layered state. The effects of rotation, shear, lateral gradients, and magnetic fields are briefly discussed.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno