Ayuda
Ir al contenido

Dialnet


Positive loops and L∞-contact systolic inequalities

    1. [1] Heidelberg University

      Heidelberg University

      Stadtkreis Heidelberg, Alemania

    2. [2] Swiss Federal Institute of Technology in Zurich

      Swiss Federal Institute of Technology in Zurich

      Zürich, Suiza

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 23, Nº. 4, 2017, págs. 2491-2521
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We prove an inequality between the L∞-norm of the contact Hamiltonian of a positive loop of contactomorphims and the minimal Reeb period. This implies that there are no small positive loops on hypertight or Liouville fillable contact manifolds. Non-existence of small positive loops for overtwisted 3-manifolds was proved by Casals et al. (J Symplectic Geom 14:1013–1031, 2016). As corollaries of the inequality we deduce various results. E.g. we prove that certain periodic Reeb flows are the unique minimisers of the L∞-norm. Moreover, we establish L∞-type contact systolic inequalities in the presence of a positive loop


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno