Ayuda
Ir al contenido

Dialnet


Resumen de An alternative solution for the repair of electrical breakdowns after natural disasters based on ant colony optimization

Yasel José Costa Salas, William A. Sarache Castro

  • español

    En la literatura especializada existe abundante literatura sobre la aplicación de meta-heurísticas en la planeación de rutas. Sin embargo, la mayoría de las investigaciones en este campo han sido desarrolladas bajo escenarios normales (ejemplo bajo condiciones meteorológicas normales). Los desastres naturales, por ejemplo los huracanes, incrementan la complejidad en este tipo de problemas combinatorios. En este artículo se resuelve un problema de planeación de ruta, específicamente para la reparación de averías eléctricas que suceden posteriores a un desastre natural. El problema es modelado empleando una formulación entera basada en asignación para Múltiples Viajeros Vendedores (mTSP). Por otra parte, en el artículo se propone una aplicación creativa de un algoritmo de optimización basado en Colonia de Hormigas (ACO), específicamente Sistema de Hormigas Multi-tipos, donde cada colonia representa un conjunto de posibles soluciones globales del problema. Las hormigas cooperan y compiten mediante frecuentes intercambios de feromonas para buscar una solución del problema. El desempeño del algoritmo ha sido comparado con otras variantes de ACO, mostrando la eficacia del algoritmo propuesto en ambiente realístico de la toma de decisiones.

  • English

    Abundant literature is available for the route planning based on meta-heuristic algorithms. However, most researches in this field are developed under normal scenarios (e.g. normal weather conditions). The natural disasters, such as hurricanes, on the contrary, impose hard constraints to these combinatorial problems. In this paper, a route-planning problem is solved, specifically, for the repair of electrical breakdowns that occur after natural disasters. The problem is modeled using an assignment-based integer programming formulation proposed for the Multiple Traveling Salesman Problem (mTSP). Moreover, this paper proposes the creative application of an algorithm based on Ant Colony Optimization (ACO), specifically Multi-type Ant Colony System (M-ACS), where each colony represents a set of possible global solutions. Ants cooperate and compete by means of “frequent” pheromone exchanges aimed to find a solution. The algorithm performance has been compared against other ACO variant, showing the efficacy of the proposed algorithm on realistic decision-making.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus