Ayuda
Ir al contenido

Dialnet


Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp–Lieb inequalities

    1. [1] Pierre and Marie Curie University

      Pierre and Marie Curie University

      París, Francia

    2. [2] University of Lyon System

      University of Lyon System

      Arrondissement de Lyon, Francia

    3. [3] University of Clermont Auvergne

      University of Clermont Auvergne

      Arrondissement de Clermont-Ferrand, Francia

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 46, Nº. 1, 2018, págs. 261-301
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work, we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp–Lieb inequalities. For this, we use optimal transport methods and the Borell–Brascamp–Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behavior for the laws of solutions to stochastic differential equations.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno