Colombia
Colombia
El modelado matemático y evaluación experimental de los efectos de la temperatura sobre la cinética de degradación foto-catalítica de una sustancia patrón utilizando radiación solar y dióxido de titanio suspendido fueron realizados en un reactor CPC a escala piloto acoplado a un intercambiador de calor para el control de la temperatura del sistema.El modelo del sistema incluye el balance de masa del reactor discontinuo con reciclado, basado en parámetros isotrópicos glo-bales. La radiación incidente se modeló utilizando modelos empíricos ajustados utilizando datos experimentales de informes ambientales y algoritmos de optimización en función de las variaciones atmosféricas. El efecto de dispersión-absorción de la radiación dentro del reactor se estimó mediante la resolución de la ecuación de transferencia radiativa.El efecto de la temperatura se modeló usando un balance térmico acoplado a ecuaciones de transferencia de calor. El modelo cinético aplicado fue modificado con la ecuación de Arrhenius.Se encontró que la temperatura afecta las velocidades de reacción por la variación de la concentración del oxígeno durante la reacción. El desempeño del proceso se mejora a condiciones normales de operación, sin control de temperatura. El modelo matemático y el algoritmo de solución establecidos son altamente predictivos, generando coeficientes de correlación de 0.99 y errores menores al 2.5%.
Mathematical modeling and experimental evaluation of temperature effects on photocatalytic degradation process and kinetic of a standard pollutants using solar radiation and suspended titanium dioxide were performed in a CPC reactor at pilot scale.The model of the system includes mass balance of the batch reactor with recycle, based on global isotropic parameters. The incident radiation was modeled using empirical models adjusted using experimental data from environmental reports and op-timization algorithms in function of atmospheric variations. The effect of scattering-absorption of radiation inside the reactor was estimated by solving the radiative transfer equation.The effect of the temperature was modeled using a thermal balance coupled to heat transfer equations. The kinetic imple-mented model was a generalized model with a modification of the Arrhenius equation.It was found that the temperature affected the reaction rates by varying the oxygen concentration during the reaction. Process performance was improved under normal operating conditions without temperature control. The mathematical model and the established solution algorithm were highly predictive, generating correlation coefficients of 0.99 and errors below 2.5%.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados