Ayuda
Ir al contenido

Dialnet


Periodic Solutions for the Generalized Anisotropic Lennard-Jones Hamiltonian

    1. [1] Nankai University

      Nankai University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 14, Nº 2, 2015 (Ejemplar dedicado a: Hamiltonian Systems and Celestial Mechanics, HAMSYS-2014), págs. 291-311
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We characterize the circular periodic solutions of the generalized LennardJones Hamiltonian system with two particles in Rn, and we analyze what of these periodic solutions can be continued to periodic solutions of the anisotropic generalized Lennard-Jones Hamiltonian system. We also characterize the periods of antiperiodic solutions of the generalized Lennard-Jones Hamiltonian system on R2n, and prove the existences of 0 < τ ∗ ≤ τ ∗∗ such that this system possesses no τ/2-antiperiodic solution for all τ ∈ (0, τ ∗), at least one τ/2-antiperiodic solution when τ = τ ∗, precisely 2n families of τ/2-antiperiodic circular solutions when τ = τ ∗∗, and precisely 2n+1 families of τ/2-antiperiodic circular solutions when τ>τ ∗∗. Each of these circular solution families is of dimension n − 1 module the S1-action.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno