Pedro Sandino Atencio Ortiz, Germán Sánchez Torres, John William Branch Bedoya
La fusión de imágenes genera una imagen 𝑓 que combina las características más relevantes de un conjunto de imágenes de la misma escenaadquiridas con diferentes cámaras o configuraciones. La Fusión de Imágenes Multifoco (MFIF) parte de un conjunto de imágenes condiferente distancia focal para generar una imagen 𝑓𝑒 con una profundidad de campo extendida. Lo que constituye una solución al problema de la profundidad de campo limitada en la configuración de un sistema óptico. La literatura muestra una amplia variedad de trabajos que abordan este problema. Las transformaciones de dominios y el análisis de bloques de píxeles son la base de los principales enfoques propuestos. En este trabajo se presenta una evaluación de diferentes sistemas de aprendizaje supervisado aplicados a MFIF, incluyendo k-vecinos más cercanos, análisis discriminante lineal, redes neuronales y máquinas de soporte vectorial. El método inicia con dos imágenes de la misma escena, pero con diferentes distancias focales que se dividen en regiones rectangulares. El objetivo principal del sistema de clasificación, que está basado en aprendizaje de máquina, es elegir las partes de ambas imágenes que deben estar en la imagen fusionada para obtener una imagen completamente enfocada. Para la cuantificación del enfoque se utilizaron las métricas más populares propuestas en la literatura como: la Energía Laplaciana, el Laplaciano Modificado por Suma y el Gradiente de Energía, entre otras. La evaluación del método propuesto incluye la fase de prueba de los clasificadores y las métricas de calidad de fusión utilizadas comúnmente en la investigación, tales como la fidelidad de la información visual y la característica de información mutua. Los resultados muestran que el concepto de clasificación automática puede abordar satisfactoriamente el problema MFIF.
Image fusion is the generation of an image 𝑓 that combines the most relevant information from a set of images of the same scene, acquired with different cameras or camera settings. Multi-Focus Image Fusion (MFIF) aims to generate an image 𝑓𝑒 with extended depth-of-field from a set of images taken at different focal distances or focal planes, and it proposes a solution to the typical limited depth-of-field problem in an optical system configuration. A broad variety of works presented in the literature address this problem. The primary approaches found there are domain transformations and block-of-pixels analysis. In this work, we evaluate different systems of supervised machine learning applied to MFIF, including k-nearest neighbors, linear discriminant analysis, neural networks, and support vector machines. We started from two images at different focal distances and divided them into rectangular regions. The main objective of the machine-learning-based classification system is to choose the parts of both images that must be in the fused image in order to obtain a completely focused image. For focus quantification, we used the most popular metrics proposed in the literature, such as: Laplacian energy, sum-modified Laplacian, and gradient energy, among others. The evaluation of the proposed method considered classifier testing and fusion quality metrics commonly used in research, such as visual information fidelity and mutual information feature. Our results strongly suggest that the automatic classification concept satisfactorily addresses the MFIF problem.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados