Ayuda
Ir al contenido

Dialnet


Simulation of friction and stiction in multibody dynamics model problems

    1. [1] University of Iowa

      University of Iowa

      City of Iowa City, Estados Unidos

  • Localización: Mechanics based design of structures and machines, ISSN 1539-7734, Vol. 46, Nº. 3, 2018, págs. 296-317
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A continuous model of Coulomb friction is used with a tangent space formulation of dierential algebraic equations of motion for simulation of multibody dynamic model problems. Characteristics of the model problems studied are similar to those encountered in broad classes of multibody systems, without the associated geometric and analytical complexities. An implicit trapezoidal numerical solution algorithm is used to simulate dynamic response that includes the onset of stiction, its progression, and its termination, avoiding sti behavior that is reported in the literature when index 3 formulations are used. Analytical criteria for stiction are derived for a three mass Coulomb friction model problem that denes the onset of and departure from stiction events with redundant equations of constraint. The tangent space formulation with implicit trapezoidal integration is applied to this analytical model to compute dynamic response, determine ranges of constraint forces that may occur during periods of stiction, and demonstrate that dynamic response is a discontinuous function of model parameters when stiction occurs. Accuracy of the continuous model of Coulomb friction is established, through comparison of results with those of the analytical model. Cartesian coordinate models of higher dimension are presented for three and four mass model problems that encounter a higher degree of redundancy in constraints during periods of stiction.

      Simulation of the Cartesian coordinate models, which have characteristics similar to more general multibody systems, yields accurate solutions, without any indication of stiness in the tangent space equations of motion. Methods successfully demonstrated in model problems provide a foundation for simulation of spatial multibody dynamic systems with frictio


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno