Ayuda
Ir al contenido

Dialnet


Scalable density-based clustering with quality guarantees using random projections

  • Autores: Johannes Schneider, Michail Vlachos
  • Localización: Data mining and knowledge discovery, ISSN 1384-5810, Vol. 31, Nº 4, 2017, págs. 972-1005
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Clustering offers significant insights in data analysis. Density-based algorithms have emerged as flexible and efficient techniques, able to discover high-quality and potentially irregularly shaped clusters. Here, we present scalable density-based clustering algorithms using random projections. Our clustering methodology achieves a speedup of two orders of magnitude compared with equivalent state-of-art density-based techniques, while offering analytical guarantees on the clustering quality in Euclidean space. Moreover, it does not introduce difficult to set parameters. We provide a comprehensive analysis of our algorithms and comparison with existing density-based algorithms.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno