Se presenta un Método de Diferencias Finitas Implícito (MDFI) para la solución del golpe de ariete en redes de tuberías. Se muestran en detalle todas las ecuaciones necesarias para calcular el caudal y presión en cada nodo de la red (interno y de borde), y cuyo acoplamiento tramo-a-tramo, mediante la ecuación de Karney, permite obtener un sistema de ecuaciones (por cada tramo) de fácil resolución aplicando el algoritmo de Thomas. Se muestran, además, expresiones originales desarrolladas por el autor válidas para modelar, en forma de diferencias finitas: (1) el término friccional de la ecuación de la dinámica , (2) el factor de fricción transiente propuesto por Brunone-Vítkovsky y, (3) los elementos de reemplazo de tuberías cortas que permiten incrementar la magnitud del paso de tiempo computacional. Se demuestra que la metodología propuesta permite modelar el flujo transitorio con mayor nivel de estabilidad y precisión numérica en comparación con el Método de las Características (MC), especialmente cuando el número Courant (Cn) es menor que 1. Sin embargo, debido a que el MDFI trabaja con coeficientes de ponderación (θ1 y θ2) que deben adoptar valores generalmente cercanos a 0,5 dependiendo del problema analizado, la obtención de una solución cercana a la exacta requiere analizar cada caso por separado, siendo obligatorio un procedimiento de ensayo y error que puede hacer que el análisis se torne lento y engorroso.
The Implicit Finite-Difference Method (IFDM) for the solution of water hammer in pipe networks is presented. All the equations necessary to calculate the flow and pressure in each node of the network are shown in detail. Section-by-section coupling through the Karney equation allows obtain a system of equations for each pipe section which is easy to solve applying the Thomas' algorithm. Also, there are presented the original expressions in the form of finite differences are presented for: (1) the frictional term of the dynamics equation, (2) the transient friction factor proposed by Brunone-Vítkovsky, and (3) the short pipe replacement elements which allow increase the time step. It is demonstrated that the proposed methodology allows modelling the transient flow with higher level of stability and numerical accuracy in comparison to the Method of Characteristics (MOC), especially when the Courant number (Cn) is less than 1. However, because of IFDM works with weighting coefficients (θ 1 and θ2) which must adopt values generally close to 0.5 depending on the analyzed problem, the achievement of the best near-to-exact solution requires to analyze each case separately, being obligatory to apply a trial/error procedure that can make the analysis cumbersome and time consuming.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados