Ilse Bollaerts, Lien Veys, Emiel Geeraerts, Lien Andries, Lies De Groef, Tom Buyens, Manuel Salinas-Navarro, Lieve Moons, Inge Van Hove
Due to the lack of axonal regeneration, age-related deterioration in the central nervous system (CNS) poses a significant burden on the wellbeing of a growing number of elderly. To overcome this regenerative failure and to improve the patient's life quality, the search for novel regenerative treatment strategies requires valuable (animal) models and techniques. As an extension of the CNS, the retinofugal system, consisting of retinal ganglion cells that send their axons along the optic nerve to the visual brain areas, has importantly contributed to the current knowledge on mechanisms underlying the restricted regenerative capacities and to the development of novel strategies to enhance axonal regeneration. It provides an extensively used research tool, not only in amniote vertebrates including rodents, but also in anamniote vertebrates, such as zebrafish. Indeed, the latter show robust regeneration capacities, thereby providing insights into the factors that contribute to axonal regrowth and proper guidance, complementing studies in mammals. This review provides an integrative and critical overview of the classical and state-of-the-art models and methods that have been employed in the retinofugal system to advance our knowledge on the signaling pathways underlying the restricted versus robust axonal regeneration in rodents and zebrafish, respectively. In vitro, ex vivo and in vivo models and techniques to improve the visualization and analysis of regenerating axons are summarized. As such, the retinofugal system is presented as a valuable model to further facilitate research on axonal regeneration and to open novel therapeutic avenues for CNS pathologies.;
© 2001-2025 Fundación Dialnet · Todos los derechos reservados