Ayuda
Ir al contenido

Dialnet


Resumen de Distribution and neurochemical characterization of neurons in the rat ventrolateral medulla activated by glucoprivation.

Lindsay M Parker, Natasha N Kumar, Tina Lonergan, Simon McMullan, Ann K Goodchild

  • Hypoglycemia elicits physiological and behavioral responses which are mediated in part by neurons within the ventrolateral medulla (VLM). The present study describes the neurochemistry of neurons activated by glucoprivation (2-deoxy-D-glucose, 2DG), specifically those within regions containing the A1, caudal C1 (cC1) and rostral C1 (rC1) cell groups. 2DG induced c-Fos immunoreactivity throughout the VLM. Activated neurons expressing prepro-cocaine and amphetamine-regulated transcript (PPCART), neuropeptide Y (NPY), glutamic acid decarboxylase (GAD67) or prepro-enkephalin (PPE) mRNA and/or immunoreactivity (-ir) for tyrosine hydroxylase (TH) were identified. TH(+) neurons were recruited in a dose-dependent manner. At high doses of 2DG [400 mg/kg, (n = 6)], 76 ± 1.2 % of activated neurons were TH(+) representing 52 ± 1.3 % of the total TH population. Virtually all activated neurons in the A1 and cC1 regions but only 60 % in the rC1 region were TH(+). Within the A1 region, TH(+), TH(+)NPY(+) and TH(+)NPY(+)PPE(+) subpopulations were activated and likely regulate vasopressin, oxytocin, and corticotrophin releasing hormone (CRH) from the hypothalamus. Within the cC1 region, non-TH neurons, TH(+)NPY(+), TH(+)NPY(+)PPCART(+), and TH(+)NPY(+)PPE(+) subpopulations were activated, likely regulating autonomic hypothalamic neurons or CRH and thyrotropin releasing hormone secretion. Within the rC1 region, non-TH neurons (40 % of those activated) were predominantly PPE(+) and were recruited by higher 2DG doses. Of the TH(+) activated neurons in the rC1 region, many expressed PPCART and half expressed NPY. The activated spinally projecting population was almost entirely TH(+)PPCART(+) and is likely to regulate adrenaline and glucagon release. These data indicate that glucoprivation activates at least nine phenotypically distinct populations of neurons in the VLM.;


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus