A robust hierarchical model predictive control framework is presented for controlling a linear system of dynamically coupled subsystems. A graph-based modeling framework captures the conservation laws of power flow systems, for which control optimizes the storage and routing of energy to maximize transient and steady-state power throughput. A constructive approach is presented for developing an N-level hierarchical controller, which guarantees satisfaction of state and input constraints in the presence of signal and model uncertainty.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados