Ayuda
Ir al contenido

Dialnet


Privacy preserving distributed optimization using homomorphic encryption

  • Autores: Yang Lu, Minghua Zhou
  • Localización: Automatica: A journal of IFAC the International Federation of Automatic Control, ISSN 0005-1098, Nº. 96, 2018, págs. 314-325
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper studies how a system operator and a set of agents securely execute a distributed projected gradient-based algorithm. In particular, each participant holds a set of problem coefficients and/or states whose values are private to the data owner. The concerned problem raises two questions: how to securely compute given functions; and which functions should be computed in the first place. For the first question, by using the techniques of homomorphic encryption, we propose novel algorithms which can achieve secure multiparty computation with perfect correctness. For the second question, we identify a class of functions which can be securely computed. The correctness and computational efficiency of the proposed algorithms are verified by two case studies of power systems, one on a demand response problem and the other on an optimal power flow problem.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno