Gabriela Hörnke Alves, Ricardo Tadeu Paraginski, Nelisa de Souza Lamas, Jessica Fernanda Hoffmann, Nathan Levien Vanier, Maurício de Oliveira
This study compared the physicochemical and technological properties of the IRGA 410 rice cultivar, obtained from organic and conventional cropping systems, and showed its susceptibility to changes during storage at 0, 6, and 12 mo. The rice conventional cropping system exhibited greater protein, lipids, and ash levels, and a head rice yield. However, organic rice presented greater total carbohydrates, soluble protein, amylose content, 33% greater free phenolics, and phenolic acids, but exhibited a greater percentage of stained grains during the storage period. The free phenolic content of cooked rice was lower than the free phenolic content of the raw rice. By Liquid chromatography with mass spectrometer (LC‐MS) were identified p‐coumaric and ferulic acids in both fractions (free and bound). The content of p‐coumaric acid and ferulic acid in bound fraction was higher in organic brown rice than in conventional brown rice. At 6 and 12 mo of storage, the main fungi found were Aspergillus sp. and Penicillium sp. Prior to storage, the Bipolaris sp. fungi was identified only in organic rice. For conventional rice, the infestation level by Aspergillussp. increased from 3% to 70% at the 6th mo of storage. In addition to the advantage of organic rice being free of agrochemicals, this study revealed that natural plant defense compounds could be produced when the rice was subjected to more biotic and abiotic stresses. However, some disadvantages were observed, such as lower protein content and a greater percentage of soluble protein, which favored the breaking of rice in processing, and a greater percentage of grain stained before and during storage. The organic and conventional cropping systems affect the physicochemical and technological properties of rice grains, which is one of the main cereals grown and consumed in the world. This study shows the advantages and disadvantages of the cropping system in grain properties that are in the interest of both consumers and processing industries.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados