Mirko Guerrieri, Marco Fedrizzi, Francesca Antonucci, Federico Pallottino, Giulio Sperandio, Mauro Pagano, Simone Figorilli, Paolo Menesatti, Corrado Costa
The estimation of operating costs of agricultural and forestry machineries is a key factor in both planning agricultural policies and farm management. Few works have tried to estimate operating costs and the produced models are normally based on deterministic approaches. Conversely, in the statistical model randomness is present and variable states are not described by unique values, but rather by probability distributions. In this study, for the first time, a multivariate statistical model based on Partial Least Squares (PLS) was adopted to predict the fuel consumption and costs of six agricultural operations such as: ploughing, harrowing, fertilization, sowing, weed control and shredding. The prediction was conducted on two steps: first of all few initial selected parameters (time per surface-area unit, maximum engine power, purchase price of the tractor and purchase price of the operating machinery) were used to estimate the fuel consumption; then the predicted fuel consumption together with the initial parameters were used to estimate the operational costs. Since the obtained models were based on an input dataset very heterogeneous, these resulted to be extremely efficient and so generalizable and robust. In details the results show prediction values in the test with r always ≥ 0.91. Thus, the approach may results extremely useful for both farmers (in terms of economic advantages) and at institutional level (representing an innovative and efficient tool for planning future Rural Development Programmes and the Common Agricultural Policy). In light of these advantages the proposed approach may as well be implemented on a web platform and made available to all the stakeholders.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados