Ayuda
Ir al contenido

Dialnet


Metric Diophantine approximation and ‘absolutely friendly’ measures

    1. [1] Brigham Young University

      Brigham Young University

      Estados Unidos

    2. [2] University of York

      University of York

      Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 11, Nº. 2, 2005, págs. 297-307
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let W(ψ) denote the set of ψ-well approximable points in Rd and let K be a compact subset of Rd which supports a measure μ. In this short article, we show that if μ is an ‘absolutely friendly’ measure and a certain μ-volume sum converges then μ(W(ψ)∩K)=0. The result obtained is in some sense analogous to the convergence part of Khintchine’s classical theorem in the theory of metric Diophantine approximation. The class of absolutely friendly measures is a subclass of the friendly measures introduced in [2] and includes measures supported on self-similar sets satisfying the open set condition. We also obtain an upper bound result for the Hausdorff dimension of W(ψ)∩K.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno