Lorenz Holmer, Ahmed Othman, Anne-Katrin Lührs, Constantin von See
Thus, purpose of this study was to compare the shear bond strength of the resin cement and the resin modified glass ionomer cement on 3D printed temporary material for crowns and bridges in combination with different surface treatment modalities.
Test specimens VarseoSmile Temp material (Bego, Bremen, Germany) (n=64) in the form of rectangular blocks (n=32) and cylindrical test specimens (n=32) were printed using the Varseo S 3D printer (Bego, Bremen, Germany). The specimens were divided into 4 groups, with 8 specimens of each kind. Two groups (n=16 pairs) were blasted with Perlablast® Micro [PM] 50µm (Bego, Bremen, Germany) and two groups (n=16 pairs) were blasted with alumina [AL] 50µm. The cylindric specimen were cemented on the rectangular block with a load of 20N using a Zwick/Roell machine (Ulm, Germany), to ensure a comparable cementing process. One group (n=8) of each pre-treatment was cemented with Fuji Cem 2 [Fuji+AL & Fuji+PM] and one of each with Variolink® Esthetic [Vario+AL & Vario+PM]. The Fuji Cem 2 was chemically cured while dual curing Variolink® Esthetic was additionally light cured using LED (Bluephase II, Ivoclar Vivadent, Ellwagen, Germany; light intensity, >1,000 mW/cm2, high power modus). The shear strength was performed with Zwick/Roell universal test machine (speed, 0.8 mm/min), fracture and statistical analysis was performed (T-test, p<0.05).
T-test showed a significant difference Fuji Cem 2 (Fuji+AL & Fuji&PM) and Variolink® Esthetic (Vario+AL &Vario+PM) (p=0.000). Fuji+AL & Fuji+PM showed a significant difference for surface pre-treatment (p=0.002). Vario+AL & Vario+PM no significance (p=0.872) for pre-treatment method was detectable.
Variolink® Esthetic showed a higher bond strength compared to Fuji Cem 2 and an increasing bond strength for Fuji Cem 2 with alumina pre-treatment. There was no significant difference for Vario+AL and Vario+PM.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados