Ayuda
Ir al contenido

Dialnet


Orlicz - Pettis theorems for multiplier convergent operator valued series

    1. [1] New Mexico State University

      New Mexico State University

      Estados Unidos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 22, Nº. 2, 2003, págs. 135-144
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let X, Y be locally convex spaces and L(X, Y ) the space of continuous linear operators from X into Y. We consider 2 types of multiplier convergent theorems for a series PTk in L(X, Y ). First, if λ is a scalar sequence space, we say that the series PTk is λ multiplier P convergent for a locally convex topology τ on L(X, Y ) if the series tkTk is τ convergent for every t = {tk} ∈ λ. We establish conditions on λ which guarantee that a λ multiplier convergent series in the weak or strong operator topology is λ multiplier convergent in the topology of uniform convergence on the bounded subsets of X. Second, we consider vector valued multipliers. If E is a sequence space of X valued sequences, the series PTk is E multiplier convergent in a locally convex topology η on Y if the series PTkxk is η convergent for every x = {xk} ∈ E. We consider a gliding hump property on E which guarantees that a series PTk which is E multiplier convergent for the weak topology of Y is E multiplier convergent for the strong topology of Y.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno