Ayuda
Ir al contenido

Dialnet


On the uniform ergodic theorem in invariant subspaces.

    1. [1] Sidi Mohamed Ben Abdellah University

      Sidi Mohamed Ben Abdellah University

      Fes-Medina, Marruecos

    2. [2] Université Chouaib Doukkali

      Université Chouaib Doukkali

      Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 2, 2019, págs. 315-324
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let T be a bounded linear operator on a Banach space X into itself. In this paper, we study the uniform ergodicity of the operator T|Y when Y is a closed subspace invariant under T. We show that if T satisfies, lim n → ∞ ‖ T n ‖ n = 0 , then T is uniformly ergodic on X if and only if the restriction of T to some closed subspace Y ⊂ X, invariant under T and R[(I − T)k] ⊂ Y for some integer k ≥ 1, is uniformly ergodic. Consequently, we obtain other equivalent conditions concerning the theorem of Mbekhta and Zemànek [9], theorem 1), also to the theorem of the Gelfand-Hille type.

       


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno