Stanley–Reisner rings of Buchsbaum* complexes are studied by means of their quotients modulo a linear system of parameters. The socle of these quotients is computed. Extending a recent result by Novik and Swartz for orientable homology manifolds without boundary, it is shown that modulo a part of their socle these quotients are level algebras. This provides new restrictions on the face vectors of Buchsbaum* complexes.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados