Ayuda
Ir al contenido

Dialnet


Low degree equations for phylogenetic group-based models

  • Autores: Marta Casanellas Rius, Jesús Fernández Sánchez, Mateusz Michalek
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 66, Fasc. 2, 2015, págs. 203-225
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Motivated by phylogenetics, our aim is to obtain a system of low degree equations that define a phylogenetic variety on an open set containing the biologically meaningful points. In this paper we consider phylogenetic varieties defined via group-based models. For any finite abelian group ? , we provide an explicit construction of codim? polynomial equations (phylogenetic invariants) of degree at most |?| that define the variety ? on a Zariski open set ? . The set ? contains all biologically meaningful points when ? is the group of the Kimura 3-parameter model. In particular, our main result confirms (Michałek, Toric varieties: phylogenetics and derived categories, PhD thesis, Conjecture 7.9, 2012) and, on the set ? , Conjectures 29 and 30 of Sturmfels and Sullivant (J Comput Biol 12:204–228, 2005).


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno