Ayuda
Ir al contenido

Dialnet


Predicción del Fracaso Escolar Mediante Técnicas de Minería de Datos

  • Autores: C. Márquez Vera, C. Romero, Sebastián Ventura Soto
  • Localización: Revista Iberoamericana de Tecnologías del Aprendizaje: IEEE-RITA, ISSN 1932-8540, Vol. 7, Nº. 3, 2012, págs. 109-117
  • Idioma: español
  • Títulos paralelos:
    • Predicting of School Failure Using Data Mining Techniques.
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper proposes to apply data mining techniques to predict school failure and drop out. We use real data on 670 middle-school students from Zacatecas, México and employ white-box classification methods such as induction rules and decision trees. Experiments attempt to improve their accuracy for predicting which students might fail or drop out by: firstly, using all the available attributes; next, selecting the best attributes; and finally, rebalancing data, and using cost sensitive classification. The outcomes have been compared and the best resulting models are shown.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno