Ayuda
Ir al contenido

Dialnet


On the geometry of the singular locus of a codimension one foliation in Pn

    1. [1] Mathematics Research Center

      Mathematics Research Center

      México

    2. [2] Universidade Federal do Rio de Janeiro

      Universidade Federal do Rio de Janeiro

      Brasil

    3. [3] Universidad de Buenos Aires

      Universidad de Buenos Aires

      Argentina

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 35, Nº 3, 2019, págs. 857-876
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We will work with codimension one holomorphic foliations over the complex projective space, represented by integrable forms ω∈H0(Ω1Pn(e)). Our main result is that, under suitable hypotheses, the Kupka set of the singular locus of ω∈H0(Ω1P3(e)), defined algebraically as a scheme, turns out to be arithmetically Cohen–Macaulay. As a consequence, we prove the connectedness of the Kupka set in Pn, and the splitting of the tangent sheaf of the foliation, provided that it is locally free.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno