Ayuda
Ir al contenido

Dialnet


Resumen de Regulation and Seasonal Dynamics of Extracellular Enzyme Activities in the Sediments of a Large Lowland River

Sabine Wilczek, Helmut Fischer, Martin Pusch

  • We tested whether seasonal changes in the sources oforganic substances for microbial metabolism were reflected changes in the activities of five extracellular enzymes in the eighth order lowland River Elbe, Germany. Leucine aminopeptidase showed the highest activities in the water column and the sediments, followed by phosphatase > β-glucosidase > α-glucosidase > exo-1,4-β-glucanase. Individual enzymes exhibited characteristic seasonal dynamics, as indicated by their relative contribution to cumulative enzyme activity. Leucine aminopeptidase was significantly more active in spring and summer. In contrast, the carbohydrate-degrading enzymes peaked in autumn, and β-glucosidase activity peaked once again in winter. Thus, in sediments, the ratio of leucine aminopeptidase/β-glucosidase reached significant higher medians in spring and summer (5-cm depth: ratio 7.7; 20-cm depth: ratio 10.1) than in autumn and winter (5-cm depth: ratio 3.7, 20-cm depth: ratio 6.3). Therelative activity of phosphatase in the sediments was seasonally related to both the biomass of planktonic algae as well as to the high content of total particulate phosphorus in autumn and winter. Due to temporal shifts in organic matter supply and changes in the storage capacity of sediments, the seasonal peaks of enzyme activities in sediments exhibited a time lag of 2–3 months compared to that in the water column, along with a significant extension of peak width. Hence, our data show that the seasonal pattern of extracellular enzyme activities provides a sensitive approach to infer seasonal or temporary availability of organic matter in rivers from autochthonous and allochthonous sources. From the dynamics of individual enzyme activities, a consistent synoptic pattern of heterotrophic functioning in the studied river ecosystem could be derived. Our data support the revised riverine productivity model predicting that the metabolism of organic matter in high-order rivers is mainly fuelled by autochthonous production occurring in these reaches and riparian inputs.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus