Ayuda
Ir al contenido

Dialnet


Resumen de Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of "Penicillium rugulosum"

I. Reyes, L. Bernier, Hani Antoun

  • Maize root colonization and phosphate solubilizing activity of the fungus Penicillium rugulosum were assessed in a greenhouse trial using soil-plant microcosms. The bacterial gene hph conferring resistance to hygromicin B was introduced by electroporation in the wild-type strain IR-94MF1 of P. rugulosum and one transformant, w-T3, was selected. Maize plants were grown for 5 weeks in a P-poor soil and fertilized with a Florida apatite mineral, with Navay, an apatite rock deposit from Venezuela, or with simple superphosphate. Inoculation treatments included strain IR-94MF1, transformant w-T3 and two IR-94MF1 UV-induced mutants with enhanced (Mps++) or reduced (Mps−) in vitro mineral phosphate solubilizing activity. In the absence of P fertilization, inoculation with any P. rugulosum isolate significantly reduced the size of the total and P-solubilizing bacterial community present in maize rhizosphere. The bacterial community significantly increased in maize inoculated with IR-94MF1 and w-T3 when P was added as apatites Navay or Florida. All P. rugulosum strains were able to stimulate the growth of maize plants as indicated by 3.6 to 28.6% increases in dry matter yields. In the presence of rock phosphate, P uptake by maize plants inoculated with the two mutants Mps++ and Mps− was not always in agreement with their P-solubilizing phenotypes. Strain IR-94MF1 and transformant w-T3 increased P assimilation by the plants fertilized with Navay rock phosphate by 26 and 38%, respectively. In this treatment, w-T3 showed its highest significant maize rhizosphere colonization. With the simple superphosphate treatment, w-T3 increased P uptake in plants by 8% over the uninoculated control and also decreased significantly the community size of total bacteria, total fungi, and P-solubilizing fungi in the rhizosphere.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus