J. Pérez Padrón, J. P. Pérez Padrón, C. F. Méndez Barrios, E. J. González Galván
This paper presents an application of a Fractional-Order Time Delay Neural Networks to chaos synchronization. The two main methodologies, on which the approach is based, are fractional-order time-delay recurrent neural networks and the fractional-order inverse optimal control for nonlinear systems. The problem of trajectory tracking is studied, based on the fractional-order Lyapunov-Krasovskii and Lur’e theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference function is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a fractional-order time-delay dynamical network and the Fractional Order Chua’s circuits.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados