Ayuda
Ir al contenido

Dialnet


Kähler manifolds with geodesic holomorphic gradients

    1. [1] Ohio State University

      Ohio State University

      City of Columbus, Estados Unidos

    2. [2] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 36, Nº 5, 2020, págs. 1489-1526
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We prove a dichotomy theorem about compact Kähler manifolds admitting nontrivial real-holomorphic geodesic gradient vector fields, which has the following consequence: either such a manifold satisfies an additional integrability condition, or through every zero of the real-holomorphic geodesic gradient there passes an uncountable family of totally geodesic, holomorphically immersed complex projective spaces, each carrying a fixed multiple of the Fubini–Study metric. We also obtain a classification result for the case where the integrability condition holds, implying that the manifold must then be biholomorphically isometric to a bundle of complex projective spaces with a bundle-like metric.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno