Ayuda
Ir al contenido

Dialnet


On the Universal Unfolding of Vector Fields in One Variable: A Proof of Kostov’s Theorem

    1. [1] University of Vienna

      University of Vienna

      Innere Stadt, Austria

    2. [2] University of Montreal

      University of Montreal

      Canadá

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this note we present variants of Kostov’s theorem on a versal deformation of a parabolic point of a complex analytic 1-dimensional vector field. First we provide a self-contained proof of Kostov’s theorem, together with a proof that this versal deformation is indeed universal. We then generalize to the real analytic and formal cases, where we show universality, and to the C∞ case, where we show that only versality is possible.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno