Ayuda
Ir al contenido

Dialnet


Predicting dental implant failures by integrating multiple classifiers

    1. [1] Universidad Nacional de Misiones

      Universidad Nacional de Misiones

      Argentina

  • Localización: Revista de Ciencia y Tecnología: RECyT, ISSN 0329-8922, ISSN-e 1851-7587, Vol. 34, Nº. 1, 2020, págs. 13-23
  • Idioma: inglés
  • Títulos paralelos:
    • Predicción de fracasos en implantes dentales mediante la integración de múltiples clasificadores
  • Enlaces
  • Resumen
    • español

      El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Estos avances se ven reflejados en la predicción de enfermedades, clasificación de imágenes, identificación y reducción de riesgos, así como muchos otros. Este trabajo tiene por objetivo investigar el beneficio de la utilización de múltiples algoritmos de clasificación, para la predicción de fracasos en implantes dentales de la provincia de Misiones, Argentina y proponer un procedimiento validado por expertos humanos. El modelo abarca la combinación de los clasificadores: Random Forest, C-Support Vector, K-Nearest Neighbors, Multinomial Naive Bayes y Multi-layer Perceptron. La integración de los modelos se realiza con el weighted soft voting method. La experimentación es realizada con cuatro conjuntos de datos, un conjunto de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y otros dos conjuntos obtenidos de distintos repositorios de datos. Los resultados arrojados del enfoque propuesto sobre el conjunto de datos de implantes dentales, es validado con el desempeño en la clasificación por expertos humanos. Nuestro enfoque logra un porcentaje de acierto del 93% de casos correctamente identificados, mientras que los expertos humanos consiguen un 87% de precisión.

    • English

      The field of data science has made many advances in the application and development of techniques in several aspects of the health sector, such as in disease prediction, image classification, risk identification and risk reduction. Based on this, the objectives of this work were to investigate the benefit of using multiple classification algorithms to predict dental implant failures in patients from Misiones province, Argentina, and to propose a procedure validated by human experts. The model used the integration of several types of classifiers.The experimentation was performed with four data sets: a data set of dental implants made for the case study, an artificially generated data set, and two other data sets obtained from different data repositories. The results of the approach proposed were validated by the performance in classification made by human experts. Our approach achieved a success rate of 93% of correctly identified cases, whereas human experts achieved 87% accuracy. Based on this, we can argue that multi-classifier systems are a good approach to predict dental implant failures.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno