Ayuda
Ir al contenido

Dialnet


Spectral Problem and Initial Value Problem of a Nonlocal Sturm-Liouville Equation

    1. [1] Shandong University

      Shandong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we considered the spectral problem and initial value problem of a nonlocal Sturm-Liouville equation with fractional integrals and fractional derivatives. We proved that the fractional operator associated to the nonlocal Sturm-Liouville equation is self-adjoint in Hilbert space. And then, we derived the corresponding spectral problem consists of countable number of real eigenvalues, and the algebraic multiplicity of each eigenvalue is simple. We also discussed the orthogonal completeness of the corresponding eigenfunction system in the Hilbert spaces. Furthermore, we obtained asymptotic properties of eigenvalues and the number of zeros of eigenfunctions by using the perturbation theory for linear operators. Finally, we studied the uniqueness of solutions for the nonlocal Sturm-Liouville equation under some initial value conditions.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno