Ayuda
Ir al contenido

Dialnet


The categoricity spectrum of large abstract elementary classes

    1. [1] Harvard University

      Harvard University

      City of Cambridge, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 25, Nº. 5, 2019
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The categoricity spectrum of a class of structures is the collection of cardinals in which the class has a single model up to isomorphism. Assuming that cardinal exponentiation is injective (a weakening of the generalized continuum hypothesis, GCH), we give a complete list of the possible categoricity spectrums of an abstract elementary class with amalgamation and arbitrarily large models. Specifically, the categoricity spectrum is either empty, an end segment starting below the Hanf number, or a closed interval consisting of finite successors of the Löwenheim–Skolem–Tarski number (there are examples of each type). We also prove (assuming a strengthening of the GCH) that the categoricity spectrum of an abstract elementary class with no maximal models is either bounded or contains an end segment. This answers several longstanding questions around Shelah’s categoricity conjecture.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno