Artem Chernikov, David Galvin, Sergei Starchenko
We establish a cutting lemma for definable families of sets in distal structures, as well as the optimality of the distal cell decomposition for definable families of sets on the plane in o-minimal expansions of fields. Using it, we generalize the results in Fox et al. (J Eur Math Soc 19(6):1785–1810, 2017 ) on the semialgebraic planar Zarankiewicz problem to arbitrary o-minimal structures, in particular obtaining an o-minimal generalization of the Szemerédi–Trotter theorem.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados