Ayuda
Ir al contenido

Dialnet


Maximal estimates for the Schrödinger equation with orthonormal initial data

    1. [1] Saitama University

      Saitama University

      Minuma-ku, Japón

    2. [2] Seoul National University

      Seoul National University

      Corea del Sur

    3. [3] Tokyo Metropolitan University

      Tokyo Metropolitan University

      Japón

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 26, Nº. 4, 2020
  • Idioma: inglés
  • Enlaces
  • Resumen
    • For the one-dimensional Schrödinger equation, we obtain sharp maximal-in-time and maximal-in-space estimates for systems of orthonormal initial data. The maximal-in-time estimates generalize a classical result of Kenig–Ponce–Vega and allow us to obtain pointwise convergence results associated with systems of infinitely many fermions. The maximal-in-space estimates simultaneously address an endpoint problem raised by Frank–Sabin in their work on Strichartz estimates for orthonormal systems of data, and provide a path toward proving our maximal-in-time estimates.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno