Tarragona, España
Antecedentes: Los conductores profesionales suelen padecer problemas para dormir o descansar correctamente. Esto puede deberse a diversos factores tanto personales como específicos de las condiciones laborales. En el presente trabajo nos hemos planteado desarrollar un modelo predictivo sobre la calidad del sueño en conductores profesionales utilizando los indicadores siguientes: Edad, Género, Confort del asiento, suspensión del asiento, Soporte lumbar ajustable del asiento del conductor, Horas de conducción, Problemas musculoesqueléticos, Drivers Stress, Irritación, Personalidad resistente, Burnout, conductas de seguridad e Impulsividad. Método: Los participantes han sido 369 conductores profesionales, de distintos sectores del transporte, obtenidos mediante un muestreo no probabilístico. Se han utilizado el programa SPSS 25.0. Resultados: Se determina la capacidad predictiva de algunas variables que afectan a los conductores sobre la calidad del sueño. Conclusiones: La calidad del sueño se puede predecir a través de determinadas variables, siendo la mejor predictora Exhaustion (Burnout). Esta investigación contribuye a un mayor conocimiento de la calidad del sueño y a la mejora de la salud de los conductores profesionales.
Background: Professional drivers often have problems sleeping or resting properly. This may be due to various factors, both personal and specific to their working conditions. In this study, we set out to develop a predictive model for the quality of sleep in professional drivers using the following indicators: Age, Gender, Seat Comfort, Seat Suspension, Adjustable Lumbar Support of the Driver’s Seat, Driving Hours, Musculoskeletal Problems, Driver Stress, Irritation, Resistant Personality, Burnout, Safety Behaviors and Impulsivity. Method: The participants were 369 professional drivers from different transport sectors, obtained through non-probabilistic sampling. The SPSS 25.0 program was used for statistical analysis. Results: The predictive capacity of certain variables that affect drivers’ sleep quality is determined. Conclusions: Sleep quality can be predicted by means of certain variables, the best predictor of which is Exhaustion (Burnout). This research contributes to the body of knowledge on sleep quality and on improving the health of professional drivers.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados