Gang Xie, Xin Li, Yatong Qian, Shouyang Wang
Search query data (SQD) can be helpful in predicting tourism demand by generating web search indexes. However, valuable nonlinear information in SQD may be neglected by researchers. To effectively capture the nonlinear information, we used kernel principal component analysis (KPCA) to extract web search indexes from SQD. Then, several models with KPCA-based web search indexes were developed for tourism demand forecasting. An empirical study was conducted with collected SQD and real data of tourist arrivals at Hong Kong. The results suggest that models with KPCA-based web search indexes are more accurate than other models because of the nonlinear data processing ability of the KPCA and demonstrate that KPCA-based web search indexes can be excellent predictors for tourism demand forecasting.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados