Ayuda
Ir al contenido

Dialnet


The Periodic Orbit Conjecture for Steady Euler Flows

    1. [1] Universitat Politècnica de Catalunya

      Universitat Politècnica de Catalunya

      Barcelona, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The periodic orbit conjecture states that, on closed manifolds, the set of lengths of the orbits of a non-vanishing vector field all whose orbits are closed admits an upper bound. This conjecture is known to be false in general due to a counterexample by Sullivan. However, it is satisfied under the geometric condition of being geodesible. In this work, we use the recent characterization of Eulerisable flows (or more generally flows admitting a strongly adapted one-form) to prove that the conjecture remains true for this larger class of vector fields.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno