Colombia
Objetivo: este artículo se centra en: (i) desarrollar un modelo de deterioro basado en máquinas de soporte vectorial (SVM) a partir de su enfoque regresivo para desligar la predicción de la condición estructural del alcantarillado de los grados de clasificación y predecir los puntajes dados por las fallas encontradas en las inspecciones CCTV; y (ii) comparar los resultados de predicción del modelo propuesto con aquellos resultados obtenidos de un modelo basado en SVM a partir de su enfoque de clasificación con el fin de explorar las ventajas y desventajas en sus predicciones bajo diferentes perspectivas. Materiales y métodos: el caso de estudio considerado fue la red de alcantarillado de Bogotá, el cual contaba con 5031 tuberías inspeccionadas, información de las características físicas de las tuberías e información de factores externos (p. e., edad, tipo de afluente y tipo de vía). Las funciones de densidad de probabilidad (FDP) se utilizaron para convertir los puntajes de las fallas encontradas en las inspecciones de CCTV en grados estructurales. Además, se utilizaron tres técnicas para evaluar las predicciones mediante diferentes perspectivas: tasas de verosimilitud positiva (TPR), curvas de rendimiento y análisis de desviación. Resultados: se encuentra que: (i) el modelo de deterioro basado en SVM a partir de su enfoque de regresión es apropiado para predecir condiciones estructurales críticas, ya que este modelo muestra valores de TPR alrededor de 6.8 (el valor más alto entre la predicción de todas las condiciones estructurales en ambos modelos) y 74 % de predicciones exitosas en las primeras 100 tuberías con más altas probabilidades de estar en condición crítica; y (ii) el modelo de deterioro basado en SVM a partir de su enfoque de clasificación es apropiado para predecir las otras condiciones estructurales, ya que este modelo muestra valores de PLR homogéneos para la predicción de todas las condiciones estructurales (entre 1.67 y 3.88) y las desviaciones entre lo observado y lo predicho son menores que aquellos resultados obtenidos del modelo SVM a partir de su enfoque de regresión
Objective: this paper focused on: (i) developing a deterioration model based on support vector machines (SVM) from its regression approach to separate the prediction of the structural condition of sewer pipes from a classification by grades and predict the scores obtained by failures found in CCTV inspections; and (ii) comparing the prediction results of the proposed model with the ones obtained by a deterioration model based on SVM classification tasks to explore the advantages and disadvantages of their predictions from different perspectives. Materials and methods: The sewer network of Bogota was the case study for this work in which a dataset consisting of the characteristics of 5031 pipes inspected by CCTV (obtained by GIS) was considered, as well as information on external variables (e.g., age, sewerage, and road type). Probability density functions (PDF) were used to convert the scores given by failures found in CCTV into structural grades. In addition, three techniques were used to evaluate the predictions from different perspectives: positive likelihood rate (PLR), performance curve and deviation analysis. Results: it was found that: (i) SVM-based deterioration model used from its regression approach is suitable to predict critical structural conditions of uninspected sewer pipes because this model showed a PLR value around 6.8 (the highest value among the predictions of all structural conditions for both models) and 74 % of successful predictions for the first 100 pipes with the highest probability of being in critical conditions; and (ii) SVM-based deterioration model used from its classification approach is suitable to predict other structural conditions because this model showed homogeneous PLR values for the prediction of all structural conditions (PLR values between 1.67 and 3.88) and deviation analysis results for all structural conditions are lower than the ones for the SVM-based model from its regression approach
© 2001-2025 Fundación Dialnet · Todos los derechos reservados